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Abstract

In agricultural harvesting robots, fruit pose information is essential for determining the
grasping point. However, in greenhouse environments, frequent occlusion caused by leaves
and stems considerably degrades the accuracy of existing models. This study aims to improve
cucumber pose estimation performance in occluded scenes. To achieve robust estimation
performance under various occlusion conditions, we designed an approach that infers the
relative offsets of occluded keypoints from visible keypoints and reconstructs the entire pose.
The training dataset consisted of images collected from an actual cucumber greenhouse
under diverse capturing angles, while the test dataset was constructed by imposing various
occlusion conditions using leaf patches to emulate realistic field distribution. In addition, a
similarity-based offset loss was introduced to encourage consistent relative-offset regression
among keypoints. For practical deployment in real-world applications, a YOLO (you only look
once)-based model was adopted to simultaneously detect cucumbers, estimate keypoints,
and regress the relative offsets between keypoints within a single architecture. Comparative
experiments demonstrated that the proposed method achieved higher accuracy than existing
approaches across various occlusion scenarios. These results indicate that the approach is
capable of compensating for missing pose components by reasoning from partially visible
regions. With continued research, this method is expected to enhance the precision of vision
pipelines for cucumber harvesting robots operating under real greenhouse conditions.
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Introduction
A of|7]&0] W2 Q o|(Cucumis sativus)?] A5 A Z20] 7| 53N H AT, 2 o)A 22 Al 7|7t e
LIS E 2 QIS R4 0 & e F kA Ql 428k 2Qjo] Q HITh 2| 5¢ kEm o] ZAskil Yl g™l ol &5l E

5171 ol AHs & 250 tigh B o] £okx| AL ITHRDA, 2021).

SR R2 7|E Q1Y 7|Rb A RO AR 7|2 S AP S —’;\—"35]'04 =288 AT
24T o] 1 E 2 g3E|of gl AlollA HEEA Q] ZQfo 2
ERO| 2Hs A2 24 oA a2 FHa AA|E FAR F © 7‘] A]
F85he= oA 2 A= o] k. wfebA] A3 ARl 2kl & 9l oA
ThKim et al., 2023a; Choi et al., 2025).

At 2 |7 AFE ke J]‘H(hardware) 9 AN Z5H5(deep learning)2] B 0 2 48 2 E.5 9|5t 7 FHE] H|Z (computer
vision) 7% 240l A Bl 742t 3HA-S SRSkl AAE AT 4 A E AT oS E01, Lee et al. (2025)= YOLO (you
only look once)v8-sementation &S & —]'0:] @7]o] Il Zubr] £7] 5 Hdl(segmentation)otal ]S 71|t &are]
= 5ol 1E3}oto] 279 2| E F45I3int W H A5 EPHE(Kim etal,, 2023b), 2H2](Kang et al., 2025y6 T
&t ARzl AA =2 A 24 A S BAFIAT, BRE 3524 02 HA oA S & EAlsiYi.
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A PRS0 85 2R A E7]0] oot s Ao] RIHSHA| S8 ThKim et al, 2023). T4 7oA 9]
B 374 /35 1w Helolu 22 A7 E o835 TS0l AAH AN A5 A E AR 7] F2ARE
o] &%LﬂOi %E%-‘ﬂ "J’%‘ 71@3% A 8/do] BE5E Ao thSon et al.,, 2025). 20]9] A-¢ YR 02 Z7] FAof

1 A A 0 = A= 7] wEol] of == A FElS 7RI ThLee et

al, 2004). E}EW Hol& H% 7PEJIXJ RIS FAE HAI S Sk StehH s AV g-toll A = 24 7o) 7R A
o= 7|diech

ut2bA £ Aol A= w A Rl A 2o] etz i) AT A 34 452 213 241 (keypoint)ZH S THA 2|
£ Bhgsto] mjy 2o)9] 271}94 ZHA| 3782 = 3okATh. AlQHE W2 YOLO-v8-PoseE & R Z ARESHo], 7|2 &
oo S == Hole FoAY AR RE 717 F A7 9] AdH 2 M (offsetyE 5T ZH, 20]2] ZA]
F4E 490 "ﬂiiol AZARI HA R s =2 88 2 4 e 7S AR
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Materials and Methods

20| XMl = 7R

AR £EFERo|A 0] A8-2 QoA Q14 B2 HAIzto & 30] A AZ, AH 4 52 3 4= qlojoksith
YOLOE TH9] ol =2 & Aot AT o 2 A-8A4J o] UZE ATHMaji etal,, 2022). 2 Aol A &= Fig. 17}
Z+0] YOLOV8-Pose &2 7|Hto 2 Qo] 2}A| £4S éﬂéwtmocher(}et al., 2023). 222 2 % d(image)oll A 2
0]9] ZA| FAH(bounding box), Z&l2(class), 522 2] 2] 2] (keypoint location), 5L A% 2] Z47}54d (keypoint objectness),
FQAHETH 4 2 TAl|(relative offset) S Sl &3t o] S E5)| 241 FHo|A Q0] AZE WA W FA|H 7|4k 2pA]
4,7 F2 A S F45H7] Sl oA Al 52 SAlol 3T 4= T 2 Aol A= Qo] 2] A 24| 4= 9l 2
0]e] 2 A3 £ Etop), 4 5 (center), 2 AFF(bottom) 2= 4 2J5] 0.1, i Q AL o] £ 2|57 e}
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Branch

Keypoint 1 (Top) Keypoint 2 (Center) Kevpoint 3 (Bottom)
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[ yoLovs-pose

: O Detected point A Target point Relative offset
[ Proposed branch : Id[md (start point) (end point) (A x,AY)
(a) Workflow of YOLOv8-Pose with relative offset branch (b) Example of relative offset by keypoints

Fig. 1. Overview of pose estimation method used in this study: (a) workflow of YOLOv8-Pose with relative
offset branch, and (b) Example of relative offset by keypoints.
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(a) Image acquisition within the greenhouse (b) Example of annotated image by data type

Fig. 2. Data collection in the greenhouse: (a) image acquisition within the greenhouse, and (b) Example of
annotated image by data type.
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&, 2784 = STk o, B Hlof el Al F2 A3 0] B Hol= o|m] X 2RF AT E of Y Qlet B2 91t
FA12 YOLO 35 Hllofe] FAjoll SHA S, ZAVAL 23b 2129t M & B 2228 (p,op,, V)22 A H S
cojw} F2AH ] 7RI(V)2 olmlAFte = URAU S §57t 27 BV =0, 571 7Fs s 7HIR 7%
V =1,R0]=74¢ V=22 A= AThDwyer B et al., 2025; Dibenedetto et al. 2025)
AAZ QN 224 w4 FRol A 2.0]o] ekt F24174 A H(ground truth)E THEE 22 B7FsSk wfhA] 2
oA MY 03;_ wie} o]n)| 7| 28] 7| HS E-gato] LAl HAS A o}gﬂ;t}(mm etal, 2023). Fig. 32 2 1]
X AR FEol4: E-ah g (poisson blending) T 0.2 U9 T (patch)] A4} #131-8(gradient)S 94|51 H AL, EFAL o]m) ]
(target image) 14101]*1 w27} 72 2] BANT-] A A2 02 ARAAA A dst7] Sl ok Aol 2
St o714 U= e i) 7 ofn| Ao Aol 502 S5 4030l A9l = IWA‘ AeiE|glom, 72
9l ZH=2 B w]o] ARGE| QT B2 9] A7) ARdell A ofH BAVA 2719] 20-50% FEC2 AAEon, 20]9]
8, S, 2 AT R0l /3o =4 3|4 27 (occlusion condition) A7 1A 2 A ol steltt. G, £ Aol A=
of21gt 13- i Aljof] chgh o] T3S WA|5L7| s Aol £ 27742] 3§71 A E (sample)el T 34 S 2]
&5tol Z 8172 718 ojn|A 2 sl
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Fig. 3. Process of image processing (poisson blending) for synthetic occlusion condition using leaf patch.
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Backbone (YOLOVS) Neck Head
Scale specific head  Task specific branch

Decoupled head froees
20 x 20 x 1024

“
o Deconpletbezd oo

C4| 40x40x512

c3 [ 80x80x 256 L

7

C5 | Conv+C2f+SPPF

C4 [Conv+C2f Stride-3
C3 | Conv+C2f

(_Bottieneck_}
2 [ Conv+C2f Backbonc
o
D
ek
(com]
Input image (640 X 640 X 3) Spatial pyramid pooling-fast )

Label: class, bounding box, keypoint, visibility

(a) Architecture of YOLOvV8-Pose model with proposed branch

Task specific branch  Decoded output Loss function

[ Bounding box size }—{ E(t",b",U',r") ]—D[ DF loss (Lyy) ]
[ Bounding box prob ]——{ C.d ]—D{ CToU loss (Ly,5) ]
[ objectcass f——  o-1(class) }——+{ BCEloss(L.s) |
[ Kevpoint location }—{ (p,,p,)xs }—D[ OKS loss (Lggs) ]

Keypoint objectness |—| 0-1 (V=0 or 1,2) ]—-[ BCE loss (Lyopj) ]
(dx.dy) x6 _ot

3

(b) Model output by branch with loss function (¢) Example of model output

Fig. 4. Network architecture for cucumber pose estimation used in this study: (a) architecture of YOLOvS-
Pose model with proposed branch, (b) model output by branch with loss function, and (c) example of model
output (yellow) and ground-truth (red).
gh5oll= YOLOS] 71& T/ = wheh Bl = th& &4 Sk ARG A AL A % of] tishA = il S A1 &
B BAl 8 2 FAAR (02 F BAVSAE B 28 ehe 24 2719] o3 AAke] Tzt Aol E 71Rke.
%]+ CloU (complete intersection over union) loss”F AF-8-%] ™ (Tian et al., 2022), A&} 3710 thaljAl= 74A] = 24
A SAH o 2R =8 Ao Astae 7|9 A (b I, r)S 7IHEO.Z DF (distribution focal) loss”F AFE-H THL et
al., 2020). 22 2-0]l thall A<= BCE (binary cross entropy) lossS AF-8-5+0] tjo|E] W = S A Z12zo| 43 SEof thsh &
A S AR, of| Z2H F2 2|7 9] Za7FsAdoll thsl| A = BCE lossS 31| 2218 790l 2t £41-8- AlAlso] melo] 2+
TH 70 A 28 oS WAsHHA A 32 A A= =5 vehd 4= ot 32 214 F3xo]| tishAl= A ()2t
72 OKS (object keypoint similarity) loss” F AFE-E| =T, 714 OKS+= CllSH F 22183 F 2214 7He] fAHE &
T2, QIZE AR FokollA] B7bol] ARGE|H A (2)2k Zro] ANFEITHMaji et al., 2022). 2 Aol Afi= 0|21t OKS losse]
A& 2H83 QA FAE EAS Bl Al LEAlS SHEOIQITE AIHE AT 7]E RHojA ol 5E 2 A
o] TS AR E (position vecton 2 F 5101 4] (3)3F 20| L2 742 7|9te] e TAlS 14t 7, OKse-5UsHA L2+
3FE 5ol Al@d)et o] Al WlE o] HldnhS B 24 QA 0 2 RALE S 7t

Z?Z‘fts 5;6;(v; > 0)

Loxs=1—0KS=1-— 1
OKS Z?Z(fts Si(vi > 0) ( )
lp: — gill3
S; = exp (—m (2)
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where N, denotes the number of keypoints considered for each object, p; denotes the estimated two-dimensional coordinate of the
i-th keypoint, while g; denotes its corresponding ground-truth coordinate, s denotes object scale factor calculated from the bounding
box area, o; is a pre-defined constant specific to each keypoint type (COCO dataset). v; is the visibility label of the i-th keypoint in the
annotation, and &; is the visibility indicator, returning 1 when v; > 0 (i.e., the keypoint is labeled) and 0 otherwise.

”'Pl] Tij "

ej=exp| ————>—- = Pis ~Pjer Tij = Gis ~ Gje ®)
( 2l )

L 1_Zivpfi"e” 8(vis > 0,5, > 0)
rel = Npairs
28w > 0,15, > 0)

@

where g;; and g; . denote the ground-truth position vectors of the starting and ending keypoints, and p; ; and p; . denote their predicted
counterparts. 7; denotes the estimated offset of the i-th keypoint pair, and r; denotes the corresponding ground-truth offset. 7; is a
predefined constant associated with each keypoint type (set to 0.33 in our experiments). N,,,; is the number of predefined keypoint pairs,
which is at most six in this study. 6(+) denotes the visibility indicator for a keypoint pair, returning 1 when both keypoints in the pair are
visible.

2FA o & Ao L A (5)9 EAFPE AREsto] Sk st olull 7 &A% 7R = YOLO2) 7|

2 478 ALga9lr) o]5 E8) mElo] 7% 22E eolx Qole] 22H GAS 271402 BHshEE Hefstol,
Q0] Yol Hole FeAHo e 712j7l FeX|He| YAE 22 4 YL S St B o R Qs 7| 2o
HESHA] 23 T2 Ao it F 22 4] (6 2ol dl5H FR2 AR L2 RE HEHA X3 F A7 9] ol 5H 2
N2 A4 A== 79k 7k52] eto] AlrEth

Liotar = Was " Las + Whox " Lyox + Weis * Legs + Woks * Loks + Lo + Lrer )

where L, denotes the final loss function used in this study. The loss weights were set as w, = 1.5, wy,,, = 7.5, wy, = 0.5,

Woks = 12.0, while all remaining loss terms were assigned a weight of 1.0. These settings follow the standard YOLO loss design.

_ Yievci (ki + dim)
Yiev Ci

ta
3

©)

where k; denotes the estimated two-dimensional coordinate of the visible keypoint i, d; _, ,, denotes the predicted offset from keypoint
1 to the occluded keypoint m. ¢; is the confidence score associated with keypoint 7, and Vis the set of visible keypoints with confidence

socre above a threshold (set to 0.3 in our experiments).

2 Ao A shs BE-2 500 epochs-?t SHEEQlom, A TS W5 ] sl 27)E S (early stop)S AHE-SHITE. o
2hA], o] mhehu]E(parameter)= 5 5 7FY B2 745 £ (validation loss)y= S/ 9 Al 0.2 A= I THKim et al.,
2021). Zelof] Q&)= 3H5 tlo] Bl Bl x| 27 (batch sizey= 1602 A=l on, melo] slehu] g ujo] ES 93t X
25} &1 2] Z (optimizer)> AdamW7F ARRE| 1T}, k5 % SF<5E-(leaming rate) 2x10°, 7FE2] 744 (weight decay)= 5
x10 2 AR = Uct. e 3 8 -2 Python 3.10.11 R PyTorch 24.1% E5f 8= 1oH, A1} A1 215 3 ofu]z] A
2] 2]ol|= OpenCV 4.10.00] AFZ-E] T}, H45-2 Intel Core i7-12700F CPU (Intel Corporation, Santa Clara, CA, USA)2} NVIDIA
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Table 1. Comparison of pose estimation methods, their respective offset loss functions, and their
model parameters.

Method Offset loss Parameters (M)
YOLOv8n-Pose (Baseline) None 3.08
YOLOv8n-Pose-L1 offset (With L1) L1 loss 3.15
YOLOv8n-Pose-L2 offset (With L2) L2 loss 3.15
YOLOv8n-Pose-OKS offset (Our method) Similarity loss 3.15

2Ho] 22 AE A5 W7He oS gk A 7k 7te) TAE Uehls 538 confusion matrix) 7|4t X ES
ARSI CE AFS-E 2| E-E= mAP (mean average precision) 2, o] HH O 2 BEGHAE = Al o] H|E9l AUE
(precision)} AA At 2 melo] Ako & BEst AT o] |89l Ae-Erecal) 2 18R] = AU =238 M (precision-
recall curve)2] OFHTHA] 0 2 ALHETHLee et al,, 2025). o] wll, 2 F-575h= YAk (threshold) 2 2= AMAIFA] (ZoFol]
A Lubd 0 & AMS-E|E OKS7HAHEE] 2100 (Maii et al., 2022), £ HFLOI A= 50%, 70%, 50%-95% 450 2 A= it

nds =5 HEH F A9 A3 k= QU7 ARA| 2ol A ARE-E]= PCK (percentage of correct keypoints) A| E7}
AFEEIGIEE POk A ()3t 2o o3 8 F QAW R R0 AL ﬂai ARk, ofd, Ak o == 2olof 5t
A 2750 (Kang et al, 2025), 2 BRE| 2 2F2712] Z20]2] 5%, 10%, 20% 45 0.2 W] =] ik,

ZNkpts"ptligl”Z < threshold

1
PCK@threshold = — < @)
Ngt,kpts

where I, denotes the length of the cucumber in the image, computed as the Euclidean distance between the top and bottom keypoints,
and the thresholds are set to 0.05, 0.10, and 0.20.

Results and Discussion

Fig 5 W 8 3 3 28 202, A4SH 2 B 3 39, 2 A% 2420] ohsh SEAR 54 S0l AlAE)
o w RS TRe0], 7 Qe WS Uehiich HAS 918 R HXo) e e Ae
SIS, 24 B of 3l 22 o], 254 @% A 242 etk ol $E4 413 34 4
2 747te) 32442 9l A ol cisl SePe 22 Aute Holzglo
Bl AR Y LY A2 jz-z dste °=l Sick epeh el 2ol HAel 44 240] 7
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Baseline With L1 With L2 Our method

y S \ _
8. - /
' : ﬁ
N et S ?

Fig. 5. Comparison of pose estimation result by different methods. The visualization is presented on
representative occluded samples for the top, center, and bottom keypoint of cucumber. Rows correspond
to different occlusion conditions, and columns represent the compared methods. The location of the leaf
patch is additionally highlighted by a yellow circle. The red point is estimated keypoint and green point is
its ground-truth keypoint. The pink line represents the predicted cucumber pose reconstructed from the
estimated keypoints, and the white line represents the ground-truth pose constructed from the ground-truth
keypoints.
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Table 2. Performance evaluation of pose estimation on test datasets.

Method Evaluation metrics

mAP@0.5 mAP@0.75 mAP@0.5:0.95 PCK@0.05 PCK@0.1 PCK@0.2
Baseline 0.92 0.92 0.85 0.45 0.79 0.95
With L1 0.57 0.47 0.42 0.19 0.41 0.75
With L2 0.74 0.71 0.62 0.22 0.48 0.83
Our method 0.97 0.96 0.86 0.31 0.73 0.94
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Fig. 6. Comparison of pose estimation performance by different occlusion conditions. The comparison is
shown for two evaluation metrics: mAP@0.50:0.95 (left) and PCK@0.1 (right).
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Table 3. Distribution of keypoint visibility and corresponding relative offsets.

Visibility (V) Keypoints Relative offset pairs

Top Center Bottom T-C* T-B C-B’
Missing 0) 21 2 20 2 12 8
Occluded (1) 13 14 36 50 66 82
Visible (2) 139 157 117 250 186 214

*¥’Relative offset pairs between the corresponding keypoint pairs (Top-Center, Top-Bottom, Center-Bottom).
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Fig. 7. Performance variation across methods after applying occlusion augmentation on training dataset.
The comparison is shown for two evaluation metrics: mAP@0.50:0.95 (left) and PCK@0.1 (right).
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